发布日期:2023-08-01浏览次数:347来源:蓝景科信
转录因子(TF)在动植物的生长发育及其对外界环境的反应中起着重要的调控作用。在基因组学和表观遗传学研究中,转录因子结合位点(TFBS)的发掘一直是研究热点。传统的染色质免疫共沉淀测序(ChIP-seq)方法,在抗体质量很好的情况下能够有效检测到TFBS。然而,好的抗体可遇不可求,这限制了ChIP-seq更广泛的应用。
2016年,O'Malley RC等人在Cell上发表了使用DAP-seq(DNA亲和纯化测序)技术,快速绘制转录因子调控靶向DNA区域的顺反组和表观组图谱的文章。2017年,Bartlett A等人在Nature Protocols上发表了DAP-seq的实验方法。
参考文献:
O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR. Cistrome and Epicistrome Features Shape the Regulatory DNA Landscape. Cell. 2016. 165(5):1280-1292. doi: 10.1016/j.cell.2016.04.038.
Bartlett A, O'Malley RC, Huang SC, Galli M, Nery JR, Gallavotti A, Ecker JR. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc. 2017. (8):1659-1672. doi: 10.1038/nprot.2017.055.
DAP-seq技术不仅可以用于模式物种的研究,同样适用于非模式物种,尤其是植物。因此,DAP-seq技术的出现,使TFBS的研究不再局限于任何生物,不再受抗体质量的限制,为生命科学领域转录因子的研究提供了新型高效的工具。
DAP-seq与ChIP-seq技术比较
技术名称 | DAP-seq | ChIP-seq |
实验模式 | 体外 | 体内 |
是否需要特异性抗体 | 否 | 是 |
是否适用于非模式物种 | 是 | 否 |
时间成本 | 低 | 高 |
是否高通量 | 是 | 否 |
蓝景科信为您提供DAP-seq全流程技术服务和个性化数据分析,具有100多个物种,1000多个转录因子的实验经验。我们的DAP-seq技术服务,已助力许多科研院所及高校的客户成功发表文章。
生信分析内容:
对原始数据进行去除接头、污染序列及低质量 reads 的处理
数据产出统计
参考序列比对分析
测序reads富集区域扫描(Call Peak)
Peak在基因功能元件上的分布统计
Peak序列模式发掘(motif search)
已知motif注释
Peak相关基因鉴定
Peak相关基因的GO和KEGG富集分析
测序数据的可视化分析
技术优势:
高通量检测转录因子或DNA结合蛋白在基因组上的结合位点;
可用于模式物种和非模式物种的研究,无需特异性抗体;
100+ 物种,1000+ 转录因子的实验经验;
为您提供完整的DAP-seq解决方案。
已做物种:
植物类:拟南芥、茎瘤芥、甘蓝型油菜、白菜型油菜、不结球白菜、菜心、小麦、大麦、花生、辣椒、番茄、草莓、黄花棘豆、苦荞、红薯、木薯、马铃薯、普通烟草、人参、鸭茅、罂粟、甘蔗、短芒大麦草、二色补血草、百脉根、芍药、丹参、狗尾草、菠菜、玉米、大豆、高粱、藜麦、陆地棉、甜瓜、黄瓜、葡萄、灰毡毛忍冬、粉葛、三叶青、猕猴桃、香蕉、蒺藜苜蓿、紫花苜蓿、伴矿景天、苔藓、地钱、毛果杨、717杨、84K杨、小黑杨、胡杨、山新杨、小叶杨、欧美杨、大青杨、毛白杨、刚毛柽柳、白桦、光皮桦、油松、毛竹、麻竹、银杏、油桐、荔枝、柑橘、甜橙、欧洲云杉、核桃、柿子、闽楠、木荷、脐橙、板栗、枣、枳、杜梨、苹果、桃、樱桃、麻疯树、茶树、梅、月季、海岛棉、白木香、橡胶树、三角褐指藻、芥蓝、蓝花耧斗菜、盐芥、无花果、菠萝、西瓜、甘薯、竹叶花椒、玫瑰。 动物类:驴、飞蝗、新孢子虫、烟粉虱、草地贪夜蛾。 真菌类:拟轮枝镰孢菌、猪苓真菌、意大利青霉、草酸青霉、腐霉、金黄壳囊孢、灵芝、糙皮侧耳、草菇、灰盖鬼伞、虫草、亚洲镰刀菌、蝗绿僵菌。 细菌类:路德维希肠杆菌、嗜热厌氧杆菌、生氮假单胞菌、伯克赫尔德氏菌、布鲁氏菌、肺炎克雷伯菌。
部分客户发表文章:
Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. Plant Physiol. 2023. doi: 10.1093/plphys/kiad315.
Zhu J, Wei X, Yin C, Zhou H, Yan J, He W, Yan J, Li H. ZmEREB57 regulates OPDA synthesis and enhances salt stress tolerance through two distinct signalling pathways in Zea mays. Plant Cell Environ. 2023. doi: 10.1111/pce.14644.
Dong Q, Tian Y, Zhang X, Duan D, Zhang H, Yang K, Jia P, Luan H, Guo S, Qi G, Mao K, Ma F. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Horticultural Plant Journal. 2023. doi.org/10.1016/j.hpj.2023.05.005. (IF=5.7)
Han P, Hua Z, Zhao Y, Huang L, Yuan Y. PuCRZ1, an C2H2 transcription factor from Polyporus umbellatus, positively regulates mycelium response to osmotic stress. Front Microbiol. 2023. 14: 1131605. (IF=6.064)
Zhang S, Wang L, Yao J, Wu N, Ahmad B, Nocker S, Wu J, Abudureheman R, Li Z, Wang X. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. Horticulture Research. 2023. uhad070. (IF=7.291)
Wang L, Tian T, Liang J, Li R, Xin X, Qi Y, Zhou Y, Fan Q, Ning G, Becana M, Duanmu D. A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence. New Phytol. 2023. doi.org/10.1111/nph.18896. (IF=10.323)
Sun Y, Han Y, Sheng K, Yang P, Cao Y, Li H, Zhu QH, Chen J, Zhu S, Zhao T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol Plant. 2023. 10: S1674-2052(23)00038-2. (IF=21.949)
Liu Y, Liu Q, Li X, Zhang Z, Ai S, Liu C, Ma F, Li C. MdERF114 enhances the resistance of apple roots to Fusarium solani by regulating the transcription of MdPRX63. Plant Physiol. 2023. kiad057. (IF=8.005)
Liu Y, Wu F, Tian R, Shi Y, Xu Z, Liu J, Huang J, Xue F, Liu B, Liu G. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol. 2023. 6(1): 1. (IF=6.548)
Liu L, Chen G, Li S, Gu Y, Lu L, Qanmber G, Mendu V, Liu Z, Li F, Yang Z. A brassinosteroid transcriptional regulatory network participates in regulating fiber elongation in cotton. Plant Physiol. 2022. 191(3): 1985-2000. (IF=8.005)
Bi Y, Wang H, Yuan X, Yan Y, Li D, Song F. The NAC transcription factor ONAC083 negatively regulates rice immunity against Magnaporthe oryzae by directly activating transcription of the RING-H2 gene OsRFPH2-6. J Integr Plant Biol. 2022. 65(3): 854-875. (IF=9.106)
Guo X, Yu X, Xu Z, Zhao P, Zou L, Li W, Geng M, Zhang P, Peng M, Ruan M. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava (Manihot esculenta Crantz). Plant Biotechnol J. 2022. 20(12): 2389-2405. (IF=13.263)
Chai Z, Fang J, Huang C, Huang R, Tan X, Chen B, Yao W, Zhang M. A novel transcription factor, ScAIL1, modulates plant defense responses by targeting DELLA and regulating gibberellin and jasmonic acid signaling in sugarcane. J Exp Bot. 2022. 73: 6727-6743. (IF=7.298)
Li R, Zheng W, Yang R, Hu Q, Ma L, Zhang H. OsSGT1 promotes melatonin-ameliorated seed tolerance to chromium stress by affecting the OsABI5-OsAPX1 transcriptional module in rice. Plant J. 2022. 112: 151-171. (IF=5.726)
Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell. 2022. 34: 4293-4312. (IF=12.085)
Luo M, Lu B, Shi Y, Zhao Y, Wei Z, Zhang C, Wang Y, Liu H, Shi Y, Yang J, Song W, Lu X, Fan Y, Xu L, Wang R, Zhao J. A newly characterized allele of ZmR1 increases anthocyanin content in whole maize plant and the regulation mechanism of different ZmR1 alleles. Theor Appl Genet. 2022. 135: 3039-3055. (IF=5.574)
Wei H, Xu H, Su C, Wang X, Wang L. Rice CIRCADIAN CLOCK ASSOCIATED 1 transcriptionally regulates ABA signaling to confer multiple abiotic stress tolerance. Plant Physiol. 2022. 190: 1057-1073. (IF=8.005)
Li M, Hou L, Zhang C, Yang W, Liu X, Zhao H, Pang X and Li Y. Genome-Wide Identification of Direct Targets of ZjVND7 Reveals the Putative Roles of Whole-Genome Duplication in Sour Jujube in Regulating Xylem Vessel Differentiation and Drought Tolerance. Front Plant Sci. 2022. 13: 829765. (IF=6.627)
Tang N, Cao Z, Yang C, Ran D, Wu P, Gao H, He N, Liu G, Chen Z. A R2R3-MYB transcriptional activator LmMYB15 regulates chlorogenic acid biosynthesis and phenylpropanoid metabolism in Lonicera macranthoides. Plant Sci. 2021. 308: 110924. (IF=5.363)
Liang S, Gao X, Wang Y, Zhang H, Yin K, Chen S, Zhang M, Zhao R. Phytochrome-interacting factors regulate seedling growth through ABA signaling. Biochem Biophys Res Commun. 2020. 526: 1100-1105. (IF=3.322)
Yao J, Shen Z, Zhang Y, Wu X, Wang J, Sa G, Zhang Y, Zhang H, Deng C, Liu J, Hou S, Zhang Y, Zhang Y, Zhao N, Deng S, Lin S, Zhao R, Chen S. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J Exp Bot. 2020. 71: 1527-1539. (IF=5.36)